Jump to main content
Jump to site search


Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring

Author affiliations

Abstract

Shape memory photonic crystals (SMPCs) combining the main characteristics of shape memory materials and photonic crystals have drawn increasing research interest. In sharp contrast to traditional responsive photonic crystals, the temporary shape of SMPCs can be “frozen” and photonic configurations can be modulated by temperature. However, the large-scale fabrication of SMPCs still remains a big challenge, making the practical application difficult. Herein novel scalable SMPC films with both mechanochromic and thermochromic properties are reported. Unlike traditional template-based methods resulting in only a small size, SMPC films are fabricated by a facile hot-pressing method and post-photocuring technology to give large-area freestanding polymer films. The films are mechanically robust and flexible, featuring an excellent structural color which can be changed upon stretching, similar to the color change process of chameleons in response to the environment. The blue-shift of the reflection peak up to 120 nm can be observed when the film is stretched. The films can be reversibly stretched and recovered in 25 cycles without obvious changes in reflection spectra. The temporary shape accompanied by tremendous color changes in the corresponding SMPC films after mechanical stress induced hot programming could be simply fixed by cooling the structure below the glass transition temperature of the polymer matrix. Incorporated programmed optical properties could afterwards be erased by temperature, and initial optical properties could be fully restored. Based on the fully reversible programmable shape as well as optical properties, the investigated SMPC films are expected to be promising candidates for various potential applications, such as smart monitoring, sensors, anti-counterfeiting, and displays.

Graphical abstract: Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring

Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Jun 2019, accepted on 21 Sep 2019 and first published on 23 Sep 2019


Article type: Paper
DOI: 10.1039/C9NR05361A
Nanoscale, 2019, Advance Article

  •   Request permissions

    Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring

    P. Wu, X. Shen, C. G. Schäfer, J. Pan, J. Guo and C. Wang, Nanoscale, 2019, Advance Article , DOI: 10.1039/C9NR05361A

Search articles by author

Spotlight

Advertisements