Issue 42, 2019

Preparation of (Zn1+xGe)(N2Ox) nanoparticles with enhanced NOx decomposition activity under visible light irradiation by nitridation of Zn2GeO4 nanoparticles designed precisely

Abstract

Quaternary zinc germanium oxynitride (Zn1+xGe)(N2Ox), a solid solution between ZnGeN2 and ZnO with a wurtzite structure, is one of the attractive photocatalysts under visible-light irradiation. In this study, the synthesis of (Zn1+xGe)(N2Ox) nanoparticles was achieved by the nitridation of Zn2GeO4 nanoparticles designed precisely to enhance their photocatalytic NOx decomposition activity under both UV and visible light irradiation. The obtained (Zn1+xGe)(N2Ox) nanoparticles exhibited a high specific surface area and visible light absorption induced by the narrow band gap of ca. 2.6–2.8 eV, both of which are reasons for the enhancement of photocatalytic activity. The oxide precursors with a nanoparticle morphology were prepared by a facile solvothermal method with various volumes of TEA (triethanolamine) as an additive. The relationships of nitridation time and TEA volume in the solvothermal reaction for the synthesis of the precursor with morphology, specific surface area, and photocatalytic NOx decomposition activity of the nitrided samples were investigated. The increase of active sites by the high surface area and the enhanced visible-light absorption ability as well as the defect amounts and states can be largely related to the excellent NOx decomposition activity of (Zn1+xGe)(N2Ox).

Graphical abstract: Preparation of (Zn1+xGe)(N2Ox) nanoparticles with enhanced NOx decomposition activity under visible light irradiation by nitridation of Zn2GeO4 nanoparticles designed precisely

Supplementary files

Article information

Article type
Paper
Submitted
20 Jun 2019
Accepted
21 Sep 2019
First published
23 Sep 2019

Nanoscale, 2019,11, 20151-20160

Preparation of (Zn1+xGe)(N2Ox) nanoparticles with enhanced NOx decomposition activity under visible light irradiation by nitridation of Zn2GeO4 nanoparticles designed precisely

J. Wang, Y. Asakura and S. Yin, Nanoscale, 2019, 11, 20151 DOI: 10.1039/C9NR05244E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements