Issue 34, 2019

Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods

Abstract

Optical vortex beams are of tremendous interest in diverse applications for optical tweezers, high-resolution imaging, quantum information and optical communications. So far, these vortex laser sources largely rely on extra-cavity mode conversion by bulk optical elements (e.g. spatial light modulators, phase plates, etc.), resulting in a relatively poor purity, low conversion efficiency, non-compact structure and expensive package. Vortex beams generated directly from cavity-mode lasers is naturally an ideal solution, but almost all of them are not extended into the important visible spectral region. Here, we address the challenge through demonstrating, for the first time, visible-wavelength all-fiber pulsed vortex lasers. By using the fiber offset splicing technique and all-fiber visible resonators, 543.6 nm (green) and 634.7 nm (red) vortex beams are generated directly from Er3+: ZBLAN and Pr3+/Yb3+: ZBLAN fiber lasers with topological charges of ±1 and ±2, respectively. In particular, by exploiting an excellent visible-wavelength saturable absorber, visible-resonance-controlled gold nanorods, we further realize stable short-pulse operation of the 543.6 nm/634.7 nm vortex beams in the miniaturized visible fiber lasers. The green/red vortex laser pulses are ∼500 ns in duration, have a 40–400 kHz tunable repetition rate, and a >45 dB RF signal-to-noise ratio. This work may pave a path towards compact visible-wavelength pulsed vortex lasers for specific applications in STED microscopy and visible-light communications.

Graphical abstract: Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods

Supplementary files

Article information

Article type
Paper
Submitted
15 Jun 2019
Accepted
31 Jul 2019
First published
01 Aug 2019

Nanoscale, 2019,11, 15991-16000

Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods

J. Zou, Z. Kang, R. Wang, H. Wang, J. Liu, C. Dong, X. Jiang, B. Xu, Z. Cai, G. Qin, H. Zhang and Z. Luo, Nanoscale, 2019, 11, 15991 DOI: 10.1039/C9NR05096E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements