NiPS3 nanoflakes: a nonlinear optical material for ultrafast photonics†
Abstract
Ultrafast photonics based on two-dimensional (2D) materials has been used to investigate light–matter interactions and laser generation, as well as light propagation, modulation, and detection. Here, 2D metal-phosphorus trichalcogenides, which are known for applications in catalysis and electrochemical storage, also exhibit advantageous photonic properties as nanoflakes that are only a few layers thick. By using an open-aperture Z-scan system, few-layer NiPS3 nanoflakes exhibited a large modulation depth of 56% and a low saturable intensity of 16 GW cm−2 at 800 nm. When NiPS3 nanoflakes were used as a saturable absorber at 1066 nm, highly stable mode-locked pulses were generated. Thus, these results revealed the nonlinear optical properties of NiPS3 nanoflakes which have potential photonics applications, such as modulators, switches, and thresholding devices.

Please wait while we load your content...