Issue 31, 2019

Chalcogenide vacancies drive the electrocatalytic performance of rhenium dichalcogenides

Abstract

The hydrogen evolution reaction (HER) is one of the most promising ways to produce clean energy. However, its wide-spread use is hindered by the price of the state-of-the-art catalysts based on precious metals. Transition metal dichalcogenide (TMD) nanomaterials are a cheap alternative, but a relatively large portion of them remains unexplored in terms of the HER. Here we report the HER performance of rhenium disulfide and diselenide in an acidic environment. We used sodium naphthalenide as an exfoliation agent. In comparison with other TMDs, the degree of exfoliation was relatively low. On the other hand, rhenium disulfide and diselenide both exhibit high chemical stability towards oxidation even after the exfoliation. The reported HER performance of the exfoliated rhenium dichalcogenides was strongly dependent on electrochemical treatment and to further enhance the performance, we used a series of electrochemical pretreatments at potentials as high as −2 V in sulfuric acid. While the morphology of the samples remained unchanged, the surface was found out to be chalcogen deficient, pointing out the formation of chalcogen vacancies. Consequentially, the HER performance was substantially enhanced. These results were corroborated by theoretical calculations showing improved bonding of hydrogen by chalcogenide vacancies at the surface. Our results show that a very simple electrochemical procedure can be used to improve the electrocatalytic performance of rhenium dichalcogenides and, possibly, also other TMDs.

Graphical abstract: Chalcogenide vacancies drive the electrocatalytic performance of rhenium dichalcogenides

Supplementary files

Article information

Article type
Paper
Submitted
16 Apr 2019
Accepted
02 Jul 2019
First published
02 Jul 2019

Nanoscale, 2019,11, 14684-14690

Chalcogenide vacancies drive the electrocatalytic performance of rhenium dichalcogenides

J. Luxa, P. Marvan, P. Lazar and Z. Sofer, Nanoscale, 2019, 11, 14684 DOI: 10.1039/C9NR03281A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements