Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 26, 2019
Previous Article Next Article

Thermally enhanced NIR–NIR anti-Stokes emission in rare earth doped nanocrystals

Author affiliations

Abstract

Nanoparticles with anti-Stokes emissions have enabled many sensing applications, but their efficiencies are considerably low. The key to enable the process of anti-Stokes emissions is to create phonons that assist the excited photons to be pumped from a lower energy state onto a higher one. Increasing the temperature will generate more phonons, but it unavoidably quenches the luminescence. Here by quantifying the number of phonons being generated from the host crystal and those at the surface of Yb3+/Nd3+ co-doped nanoparticles, we systematically investigated mechanisms towards the large enhancements of the phonon-assisted anti-Stokes emissions from 980 nm to 750 nm and 803 nm. Moreover, we provided direct evidence that moisture release from the nanoparticle surface at high temperature was not the main reason. We further demonstrated that the brightness of 10 nm nanoparticles was enhanced by more than two orders of magnitude, in stark contrast to the thermal quenching effect.

Graphical abstract: Thermally enhanced NIR–NIR anti-Stokes emission in rare earth doped nanocrystals

Back to tab navigation

Supplementary files

Article information


Submitted
09 Apr 2019
Accepted
06 Jun 2019
First published
10 Jun 2019

Nanoscale, 2019,11, 12547-12552
Article type
Paper

Thermally enhanced NIR–NIR anti-Stokes emission in rare earth doped nanocrystals

C. Mi, J. Zhou, F. Wang and D. Jin, Nanoscale, 2019, 11, 12547
DOI: 10.1039/C9NR03041G

Social activity

Search articles by author

Spotlight

Advertisements