Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Anomalous Interplay of Slip, Shear and Wettability in Nanoconfined Water

Abstract

Slip of liquid over nanometer scales is traditionally believed to be augmented with interfacial shear. In sharp contrast to this intuitive paradigm, here we show that a reverse of this phenomenon may also be possible, by exploiting a rich and non-trivial interplay between interfacial wettability and shear distribution in nano-confined water. This may be attributed to a complex overlapping effect the local hydrodynamic fields imposed by the opposing boundaries, in case of highly confined water molecules. The net effect culminates in the form of intriguing molecular layering that can by no means be intuitively estimated, as unveiled from the present molecular dynamics simulations. The consequent complex nature of the interfacial friction is observed to not only depend on the chemical and physical signature of the interface but also on the distribution of the shear rate. We also provide a simple continuum based theory, in an effort to capture the essential aspects of the underlying physico-chemical interactions. These results are likely to open up new windows for control of slippery and sticky flows in nanofluidic channels.

Back to tab navigation

Publication details

The article was received on 20 Feb 2019, accepted on 16 May 2019 and first published on 17 May 2019


Article type: Paper
DOI: 10.1039/C9NR01572H
Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Anomalous Interplay of Slip, Shear and Wettability in Nanoconfined Water

    C. Bakli and S. Chakraborty, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR01572H

Search articles by author

Spotlight

Advertisements