Jump to main content
Jump to site search

Issue 20, 2019
Previous Article Next Article

Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars

Author affiliations

Abstract

Motor proteins function in in vivo ensembles to achieve cargo transport, flagellum motion, and mitotic cell division. Although the cooperativity of multiple motors is indispensable for physiological function, reconstituting the arrangement of motors in vitro is challenging, so detailed analysis of the functions of motor ensembles has not yet been achieved. Here, we developed an assay platform to study the motility of microtubules driven by a defined number of kinesin motors spaced in a definite manner. Gold (Au) nano-pillar arrays were fabricated on a silicon/silicon dioxide (Si/SiO2) substrate with spacings of 100 nm to 500 nm. The thiol-polyethylene glycol (PEG)-biotin self-assembled monolayer (SAM) and silane-PEG-CH3 SAM were then selectively formed on the pillars and SiO2 surface, respectively. This allowed for both immobilization of kinesin molecules on Au nano-pillars in a precise manner and repulsion of kinesins from the SiO2 surface. Using arrayed kinesin motors, we report that motor number and spacing do not influence the motility of microtubules driven by kinesin-1 motors. This assay platform is applicable to all kinds of biotinylated motors, allows the study of the effects of motor number and spacing, and is expected to reveal novel behaviors of motor proteins.

Graphical abstract: Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars

Back to tab navigation

Supplementary files

Article information


Submitted
13 Feb 2019
Accepted
28 Feb 2019
First published
04 Mar 2019

Nanoscale, 2019,11, 9879-9887
Article type
Paper

Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars

T. Kaneko, S. Ando, K. Furuta, K. Oiwa, H. Shintaku, H. Kotera and R. Yokokawa, Nanoscale, 2019, 11, 9879
DOI: 10.1039/C9NR01324E

Social activity

Search articles by author

Spotlight

Advertisements