Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 18, 2019
Previous Article Next Article

Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability

Author affiliations

Abstract

In this topical review, we have focused on the recent advances made in the studies of lead-free perovskites in the bulk form and as nanocrystals. Substitution of lead in halide perovskites is essential to overcome the toxicity concerns and improve the relatively low stability of these materials. In lead-free double perovskites the unit cell is doubled and two divalent lead cations are replaced by mono and trivalent cations. The current main challenge with the double perovskite metal halides lies in overcoming their inherently indirect and disallowed optical transitions. In this review, we have discussed the recent discoveries made in the synthesis of these materials and highlighted how nanocrystals can serve as model systems to explore the schemes of cationic exchange, doping and alloying for engineering the electronic structure of double perovskites. In nanocrystals, the quantum confinement effects can modify the electronic structure and the resulting optical transition, thus increasing the absorption cross-section and emission, which are important properties for optoelectronic devices. Lastly, the enlarged surface to volume ratio in the nanocrystals adds a surface energy term that may enhance the stability of the metastable crystallographic phases. We have reviewed how the nanocrystal can provide information on phases that are inherently stable and investigated how the facile exchange reactions can help in achieving material compositions that are impossible to achieve by any other way. Finally, based on our recent synthetic experience, we have emphasized the similarities between lead-based and lead-free perovskite nanocrystals; we hope that our insight along with a summary of recent progress in this fast-growing field will help to expand the interest in lead-free perovskites towards a greener and brighter future.

Graphical abstract: Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability

Back to tab navigation

Article information


Submitted
31 Jan 2019
Accepted
25 Mar 2019
First published
27 Mar 2019

Nanoscale, 2019,11, 8665-8679
Article type
Review Article

Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability

S. Khalfin and Y. Bekenstein, Nanoscale, 2019, 11, 8665
DOI: 10.1039/C9NR01031A

Social activity

Search articles by author

Spotlight

Advertisements