Jump to main content
Jump to site search

Increased electrode activity during geosmin oxidation provided by Pt nanoparticle-embedded nanocarbon film


Musty odor compound geosmin was electrochemically detected by using Pt nanoparticle (PtNP)-embedded nanocarbon (Pt-C) films formed with unbalanced magnetron (UBM) co-sputtering. The sputtered Pt components formed NPs (typically 1.53-4.75 nm in diameter) spontaneously in the carbon films, owing to the poor intermiscibility of Pt with carbon. The sur-face concentrations of PtNPs embedded in the nanocarbon film were widely controllable (Pt=4.8-35.9 at.%) by regulating the target powers of the Pt and carbon individually. The obtained film had a flat surface (Ra=0.17-0.18 nm) despite the fact the PtNPs were partially exposed at the surface. Compared with a Pt film electrode, some Pt-C films exhibited higher elec-trode activity against geosmin although the surface Pt concentrations of these Pt-C films were much lower than that of the Pt film electrode, thanks to the wider potential window and lower background current that resulted from the ultraflat and stable carbon-based film prepared by UBM co-sputtering. Computational experiments revealed that the theoretical oxida-tion potential (Eox) value for geosmin was relatively similar to that obtained in electrochemical experiments using our Pt-C film electrode. Moreover, we also theoretically estimated the possible oxidation site of geosmin molecules and the ad-vantage of the NP shape of the electroactive Pt parts as regards the electrochemical oxidation of geosmin. We successfully used the Pt-C film (10.6 at.%) electrode to detect geosmin in combination with HPLC at a low detection limit of 100 ng L-1.

  • This article is part of the themed collection: Nanocarbons
Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Jan 2019, accepted on 08 Apr 2019 and first published on 09 Apr 2019

Article type: Paper
DOI: 10.1039/C9NR00793H
Citation: Nanoscale, 2019, Accepted Manuscript

  •   Request permissions

    Increased electrode activity during geosmin oxidation provided by Pt nanoparticle-embedded nanocarbon film

    T. Kamata, M. Sumimoto, S. Shiba, R. Kurita, O. Niwa and D. Kato, Nanoscale, 2019, Accepted Manuscript , DOI: 10.1039/C9NR00793H

Search articles by author