Slow polymer diffusion on brush-patterned surfaces in aqueous solution†
Abstract
A model system for the investigation of diffusional transport in compartmentalized nanosystems is described. Arrays of “corrals” enclosed within poly[oligo(ethylene glycol)methyl ether methacrylate] (POEGMA) “walls” were fabricated using double-exposure interferometric lithography to deprotect aminosilane films protected by a nitrophenyl group. In exposed regions, removal of the nitrophenyl group enabled attachment of an initiator for the atom-transfer radical polymerization of end-grafted POEGMA (brushes). Diffusion coefficients for poly(ethylene glycol) in these corrals were obtained by fluorescence correlation spectroscopy. Two modes of surface diffusion were observed: one which is similar to diffusion on the unpatterned surface and a very slow mode of surface diffusion that becomes increasingly important as confinement increases. Diffusion within the POEGMA brushes does not significantly contribute to the results.

Please wait while we load your content...