Issue 13, 2019

Design of Raman tag-bridged core–shell Au@Cu3(BTC)2 nanoparticles for Raman imaging and synergistic chemo-photothermal therapy

Abstract

Nanoscale metal–organic frameworks (NMOFs) with ultrahigh porosities and incredibly high internal surface areas are potential nanomaterials to fabricate multifunctional theranostic platforms. This work describes the design of Raman tag-bridged core–shell nanoparticles (NPs) for multifunctional Raman imaging and chemo-phototherapy. Au@Cu3(BTC)2 NPs are characterized with the core of gold nanoparticles (Au NPs), the bridging of the Raman reporter molecule 4-mercaptobenzoic acid (4-MBA), and the shell of copper(II) carboxylate MOFs (Cu3(BTC)2). The preparation strategy is based on the assembly of Cu3(BTC)2 on Au NPs with the help of bifunctional 4-MBA. The Raman reporter molecule 4-MBA with characteristic Raman signals is involved in the linking of Au NPs and Cu3(BTC)2, avoiding additional modification of Raman reporter molecules and thus simplifying the synthesis process. Aptamers and the anti-cancer drug doxorubicin (DOX) were modified on Au@Cu3(BTC)2 for functionalization. The Au NP core not only acted as photothermal agents to produce hyperthermia for destroying cancer cells and promoting drug release, but also served as surface enhanced Raman scattering (SERS) substrates to enhance the Raman signal of 4-MBA. The Cu3(BTC)2 shell can provide sites for aptamer functionalization and drug loading. The Au@Cu3(BTC)2 NPs exhibited high drug loading capacity (57%) and good photothermal conversion efficiency. With good biocompatibility, high drug loading capacity, excellent SERS effect and photothermal effect, Au@Cu3(BTC)2 NPs showed effective theranostic applications in cell tracking and in vivo synergistic chemo-photothermal therapy of tumors, demonstrating the feasibility of theranostic applications in cancer diagnosis and therapy. It is speculated that this work would inspire further studies on the construction of theranostic nanoplatforms.

Graphical abstract: Design of Raman tag-bridged core–shell Au@Cu3(BTC)2 nanoparticles for Raman imaging and synergistic chemo-photothermal therapy

Supplementary files

Article information

Article type
Paper
Submitted
02 Jan 2019
Accepted
22 Feb 2019
First published
28 Feb 2019

Nanoscale, 2019,11, 6089-6100

Design of Raman tag-bridged core–shell Au@Cu3(BTC)2 nanoparticles for Raman imaging and synergistic chemo-photothermal therapy

J. He, J. Dong, Y. Hu, G. Li and Y. Hu, Nanoscale, 2019, 11, 6089 DOI: 10.1039/C9NR00041K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements