Jump to main content
Jump to site search

Issue 13, 2019
Previous Article Next Article

Squeezed nanocrystals: equilibrium configuration of metal clusters embedded beneath the surface of a layered material

Author affiliations

Abstract

Shapes of functional metallic nanocrystals, typically synthesized either free in solution or supported on surfaces, are key for controlling properties. Here, we consider a novel new class of metallic nanocrystals, copper clusters embedded near the surface of graphite, which can be considered a model system for metals embedded beneath surfaces of layered materials, or beneath supported membranes. We develop a continuum elasticity (CE) model for the equilibrium shape of these islands, and compare its predictions with experimental data. The CE model incorporates appropriate surface energy, adhesion energies, and strain energy. The agreement between the CE model and the data is—with one exception—excellent, both qualitatively and quantitatively, and is achieved with a single adjustable parameter. The model predicts that the embedded island shape is invariant with size, manifest both by constant side slope and by constant aspect ratio. This prediction is rationalized by dimensional analysis of the relevant energetic contributions. The aspect ratio (width : height) of an embedded Cu cluster is much larger than that of a supported but non-embedded Cu cluster, due to resistance of the graphene membrane to deformation. Experimental data diverge from the model predictions only in the case of the aspect ratio of small islands, below a critical height of ∼10 nm. The divergence may be due to bending strain, which is treated only approximately in the model. Strong support for the CE model and its interpretation is provided by additional data for embedded Fe clusters. Most of these observations and insights should be generally applicable to systems where a metal cluster is embedded beneath a layered material or supported membrane, provided that shape equilibration is possible.

Graphical abstract: Squeezed nanocrystals: equilibrium configuration of metal clusters embedded beneath the surface of a layered material

Back to tab navigation

Supplementary files

Publication details

The article was received on 31 Dec 2018, accepted on 08 Mar 2019 and first published on 11 Mar 2019


Article type: Paper
DOI: 10.1039/C8NR10549A
Nanoscale, 2019,11, 6445-6452
  • Open access: Creative Commons BY license
  •   Request permissions

    Squeezed nanocrystals: equilibrium configuration of metal clusters embedded beneath the surface of a layered material

    S. E. Julien, A. Lii-Rosales, K. Wan, Y. Han, M. C. Tringides, J. W. Evans and P. A. Thiel, Nanoscale, 2019, 11, 6445
    DOI: 10.1039/C8NR10549A

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements