Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 14, 2019
Previous Article Next Article

Anisotropic manganese antimonide nanoparticle formation by solution–solid–solid growth mechanism: consequence of sodium borohydride addition towards reduced surface oxidation and enhanced magnetic moment

Author affiliations

Abstract

A new approach to the solution-phase synthesis of manganese antimonide nanoparticles was developed to reduce competitive oxide formation by exploitation of sodium borohydride (NaBH4) (0.53–2.64 mmol) as a sacrificial reductant. However, in the presence of near-stoichiometric precursor amounts of manganese carbonyl and triphenyl antimony, the introduction of NaBH4 results in a different growth mechanism, Solution–Solid–Solid (SSS), leading to tadpole-shaped manganese antimonide nanoparticles with antimony-rich heads and stoichiometric manganese antimonide tails. We hypothesize that a solid antimony-rich manganese antimonide cluster acts as an initiator to tail growth in solution. Notably, the length of the tail correlated with the amount of NaBH4 used. Interestingly, these anisotropic particles can be transformed progressively into spherical-shaped nanoparticles upon the addition of excess manganese carbonyl. The anisotropic manganese antimonide particles possess saturation magnetizations ca. twenty times higher than that reported for MnSb nanoparticles prepared without NaBH4, attributed to limitation of oxidation.

Graphical abstract: Anisotropic manganese antimonide nanoparticle formation by solution–solid–solid growth mechanism: consequence of sodium borohydride addition towards reduced surface oxidation and enhanced magnetic moment

Back to tab navigation

Supplementary files

Article information


Submitted
12 Nov 2018
Accepted
14 Mar 2019
First published
14 Mar 2019

Nanoscale, 2019,11, 6886-6896
Article type
Paper
Author version available

Anisotropic manganese antimonide nanoparticle formation by solution–solid–solid growth mechanism: consequence of sodium borohydride addition towards reduced surface oxidation and enhanced magnetic moment

M. A. Hettiarachchi, E. Abdelhamid, B. Nadgorny and S. L. Brock, Nanoscale, 2019, 11, 6886
DOI: 10.1039/C8NR09142K

Social activity

Search articles by author

Spotlight

Advertisements