Jump to main content
Jump to site search


Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites

Author affiliations

Abstract

Copper–CNT (carbon nanotube) composite materials are promising alternatives to conventional conductors in applications ranging from interconnects in microelectronics to electrical cabling in aircraft and vehicles. Unfortunately, exploiting the full potential of these composites is difficult due to the poor Cu–CNT electro-mechanical interface. We demonstrate through large-scale ab initio calculations and sonication experiments that this problem can be addressed by CNT surface modification. Our calculations show that covalent functionalization of CNTs below 6.7 at% significantly improves Cu–CNT wetting and the mechanical properties of the composite. Oxidative pre-treatment of CNTs enhances the Young's modulus of the composite by nearly a factor 3 above that of pure Cu, whereas amination slightly improves the electrical current density with respect to the unmodified Cu–CNT system in the high bias regime. However, only nitrogen doping can effectively improve both the mechanical and electrical properties of the composite. As the experiments show, consistent with the calculations, substitutional doping with nitrogen effectively improves adhesion of the CNT to the Cu matrix. We also predict an improvement in the mechanical properties for the composite containing doped double-wall CNTs. Moreover, the calculations indicate that the presence of nitrogen dopants almost doubles locally the transmission through the nanotube and reduces the back scattering in the Cu matrix around the CNT. The computed electrical conductance of N-doped Cu–CNT “carpets” exceeds that of an undoped system by ∼160%.

Graphical abstract: Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 Sep 2018, accepted on 01 Dec 2018 and first published on 04 Dec 2018


Article type: Paper
DOI: 10.1039/C8NR07521B
Citation: Nanoscale, 2019, Advance Article
  •   Request permissions

    Carbon nanotube functionalization as a route to enhancing the electrical and mechanical properties of Cu–CNT composites

    K. Z. Milowska, M. Burda, L. Wolanicka, P. D. Bristowe and K. K. K. Koziol, Nanoscale, 2019, Advance Article , DOI: 10.1039/C8NR07521B

Search articles by author

Spotlight

Advertisements