Jump to main content
Jump to site search


Internal Pressure and States Assessment of the Inherent Macroscopic Force Fields of Liquids

Abstract

A theoretical approach is proposed for describing the nature of the internal pressure of liquids (Pi), which allows us to overcome the uncertainty of its definition and propose a new thermodynamic scale for liquids. It is shown that internal pressure is created by molecular macroscopic force field of liquid-phase system and is equal to a force applied from the field side to arbitrary (mentally) unit surface within the body of liquid that is orthogonal to surface force field vectors. The relationship between internal pressure and cohesive energy density is discussed. In this regard, concerning physical sense, internal pressure is a force parameter, while cohesive energy density is an energy parameter. A hypothesis is proposed that the value of the temperature coefficient of the internal pressure for liquid corresponds to the state of its molecular force field while dynamics of its change follows the evolutional changes in the macroscopic force field of the liquid. This hypothesis allows us to develop a thermodynamic scale of states of the force field of liquids, which is a dimensionless function and is called the index of evolution (Ievol) of the force field of a liquid. The equation of the index of evolution of the force field for all associated liquid-phase systems is given.

Back to tab navigation

Publication details

The article was received on 24 Jul 2019, accepted on 06 Nov 2019 and first published on 07 Nov 2019


Article type: Paper
DOI: 10.1039/C9NJ03847G
New J. Chem., 2019, Accepted Manuscript

  •   Request permissions

    Internal Pressure and States Assessment of the Inherent Macroscopic Force Fields of Liquids

    V. N. Kartsev, S. N. Shtykov and K. E. Pankin, New J. Chem., 2019, Accepted Manuscript , DOI: 10.1039/C9NJ03847G

Search articles by author

Spotlight

Advertisements