Jump to main content
Jump to site search


In vitro cytotoxicity and catalytic evaluation of dioxidovanadium(v) complexes in an azohydrazone ligand environment

Author affiliations

Abstract

Three new anionic dioxidovanadium(V) complexes (HNEt3)[VO2(L)1–3] (1–3) of tridentate binegative aroylhydrazone ligands containing the azobenzene moiety were synthesized and structurally characterized. The aroylhydrazone ligands (H2L1–3) were derived from the condensation of 5-(arylazo) salicylaldehyde derivatives with the corresponding aroyl hydrazides. All the synthesized ligands and metal complexes were successfully characterized by several physicochemical techniques, namely, elemental analysis, electrospray ionization mass spectrometry, spectroscopic methods (IR, UV-vis and NMR), and cyclic voltammetry. Single-crystal X-ray diffraction crystallography of 1–3 revealed five-coordinate geometry, where the ligand coordinates to the metal centre in a binegative tridentate O, N, O coordinating anion and two oxido-O atoms, resulting in distortion towards the square pyramidal structure. The complexes were further evaluated for their in vitro cytotoxicity against HeLa and HT-29 cancer cell lines. All the complexes manifested a cytotoxic potential that was found to be comparable with that of clinically referred drugs, while complex 3 proved to be the most cytotoxic among the three complexes for both cell lines, which may be due to the synergistic effect of the naphthyl substituent in the azohydrazone ligand environment coordinated to the vanadium metal. The synthesized complexes 1–3 were probed as catalysts for the oxidative bromination of thymol and styrene as a functional mimic of vanadium haloperoxidases (VHPOs). All the reactions provided high percentages of conversion (>90%) with a high turnover frequency (TOF) in the presence of the catalysts 1–3. In particular, for the oxidative bromination of thymol, the percentage of conversion and TOF were in the ranges of 98–99% and 5380–7173 (h−1), respectively. Besides, 3 bearing the naphthyl substituent showed the highest TOF among all the complexes for the oxidative bromination of both thymol and styrene.

Graphical abstract: In vitro cytotoxicity and catalytic evaluation of dioxidovanadium(v) complexes in an azohydrazone ligand environment

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Apr 2019, accepted on 26 Jun 2019 and first published on 27 Jun 2019


Article type: Paper
DOI: 10.1039/C9NJ01815H
New J. Chem., 2019, Advance Article

  •   Request permissions

    In vitro cytotoxicity and catalytic evaluation of dioxidovanadium(V) complexes in an azohydrazone ligand environment

    M. Mohanty, S. K. Maurya, A. Banerjee, S. A. Patra, M. R. Maurya, A. Crochet, K. Brzezinski and R. Dinda, New J. Chem., 2019, Advance Article , DOI: 10.1039/C9NJ01815H

Search articles by author

Spotlight

Advertisements