Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 22nd May 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Shifting of band edge and investigation of charge carrier pathways in CdS/g-C3N4 heterostructure for enhanced photocatalytic degradation of Levofloxacin

Abstract

We investigated charge carrier pathways and the generation of an electric field at the interface of a CdS/g-C3N4 heterojunction for better understanding of the photocatalytic mechanism and photocatalytic performance. A rapid and uniform microwave-assisted method was used to form a CdS/g-C3N4 heterojunction by coupling CdS nanoparticles with g-C3N4 nanosheets. The charge carrier pathways of electrons and holes were examined using a near-band-edge single light activation strategy combined with XPS and UV-vis DRS data. Degradation of the antibiotic levofloxacin was used to confirm the suggested behavior and to evaluate the photocatalytic efficiency. The results showed that the band gap value in the composite structure narrowed, resulting in longer excited-state lifetime. Electron injection pathways were confirmed by comparing data obtained from degradation in the presence of coupled samples and physically mixed samples. The results further indicated that the band positions shifted due to generation of an electric field at the composite sample interface, allowing electrons to travel from the conduction band in CdS to the conduction band in g-C3N4 and not the opposite, as usually discussed. These findings clarify the disagreement among different cases considered in the literature.

Back to tab navigation

Publication details

The article was received on 08 Apr 2019, accepted on 13 May 2019 and first published on 14 May 2019


Article type: Paper
DOI: 10.1039/C9NJ01782H
New J. Chem., 2019, Accepted Manuscript

  •   Request permissions

    Shifting of band edge and investigation of charge carrier pathways in CdS/g-C3N4 heterostructure for enhanced photocatalytic degradation of Levofloxacin

    S. Rengaraj, F. Al Marzouqi and Y. Kim, New J. Chem., 2019, Accepted Manuscript , DOI: 10.1039/C9NJ01782H

Search articles by author

Spotlight

Advertisements