Jump to main content
Jump to site search

Issue 6, 2019
Previous Article Next Article

High-adhesion vertically aligned gold nanowire stretchable electrodes via a thin-layer soft nailing strategy

Author affiliations

Abstract

A stretchable electrode is a crucial component in future elastronics (i.e. stretchable electronics) with implications in soft actuators, healthcare monitoring, and robotics to name a few. The performance of the stretchable electrode is generally evaluated in terms of three key aspects: sensitivity, stretchability, and durability. While encouraging progress has been made in the first two aspects, long-term stability remains a challenge because of failure at the soft/hard materials interface between active materials and elastomeric substrates. Here, we propose a new microsphere lithography-based strategy to pattern vertically aligned gold nanowires (v-AuNWs) with quasi-ordered pinholes, allowing ‘nailing’ of PDMS into the pinholes. This enabled substantially enhanced interfacial adhesion of 24 times greater than that without microsphere lithography. Moreover, the pinhole size in the v-AuNW film could be tuned from an average diameter of 0.4 to 2.8 μm. Both experimental and simulation results demonstrate that the sensitivity increased as the pinhole size increased. Our strategy represents a novel route to fabricate robust elastronic electrodes for potential applications in next-generation wearable and implantable devices.

Graphical abstract: High-adhesion vertically aligned gold nanowire stretchable electrodes via a thin-layer soft nailing strategy

Back to tab navigation

Supplementary files

Publication details

The article was received on 22 May 2019, accepted on 29 May 2019 and first published on 29 May 2019


Article type: Communication
DOI: 10.1039/C9NH00336C
Nanoscale Horiz., 2019,4, 1380-1387

  •   Request permissions

    High-adhesion vertically aligned gold nanowire stretchable electrodes via a thin-layer soft nailing strategy

    Y. Ling, K. Guo, B. Zhu, B. Prieto-Simon, N. H. Voelcker and W. Cheng, Nanoscale Horiz., 2019, 4, 1380
    DOI: 10.1039/C9NH00336C

Search articles by author

Spotlight

Advertisements