Jump to main content
Jump to site search


Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets

Author affiliations

Abstract

Hydrogen evolution reaction (HER) on molybdenum disulfide (MoS2) nanosheets is enhanced for the metallic (1T) phase relative to the thermodynamically stable semiconducting (2H) phase. To measure this difference, we employ scanning electrochemical microscopy (SECM) for high-resolution mapping (<20 nm spatial resolution) of surface reactivity for mixed-phase and pure 2H-only MoS2 nanosheets. For mixed-phase MoS2 nanosheets, we find major differences in reactivity of the two phases for electron transfer involving ferrocenemethanol, allowing us to locate 1T and 2H regions and directly map the corresponding HER activity. In our measurements, we find that HER is immeasurably slow on the 2H basal plane and much faster on edges, whereas 1T portions are highly reactive across the entire portion. We also use scanning transmission electron microscopy-electron energy loss spectroscopy and scanning Kelvin probe microscopy to corroborate the phase domains and local workfunctions (surface potentials) within the MoS2 nanosheets; the mixed-phase MoS2 has a shallower workfunction compared to 2H MoS2, which could enable a greater driving force for H2 generation. This powerful combination of techniques for spatially mapping surface reactivity and correlated phase domains should be applicable to a broad range of materials for HER and other catalysis reactions.

Graphical abstract: Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets

Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Oct 2018, accepted on 27 Nov 2018 and first published on 29 Nov 2018


Article type: Communication
DOI: 10.1039/C8NH00346G
Citation: Nanoscale Horiz., 2019, Advance Article
  •   Request permissions

    Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets

    T. Sun, H. Zhang, X. Wang, J. Liu, C. Xiao, S. U. Nanayakkara, J. L. Blackburn, M. V. Mirkin and E. M. Miller, Nanoscale Horiz., 2019, Advance Article , DOI: 10.1039/C8NH00346G

Search articles by author

Spotlight

Advertisements