Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 1, 2019
Previous Article Next Article

Enhanced moisture stability of metal halide perovskite solar cells based on sulfur–oleylamine surface modification

Author affiliations

Abstract

As one of the most promising light-harvesting materials, perovskites have drawn tremendous attention for their unique advantages, such as high efficiency, low cost and facile fabrication compared with other photovoltaic materials. Nevertheless, poor moisture tolerance of the perovskites greatly hampers the operation of such devices and hinders their commercialization. Herein, we demonstrate a facile dipping treatment using sulfur–oleylamine solution for surface atomic modulation of perovskite films. Oleylammonium polysulfides (OPs) would be self-assembled on the etched perovskite film as an ultrathin outer layer. This layer could passivate the surface chemical activity of the outer perovskite layers. Moreover, the hydrophobic OPs significantly enhance moisture stability of such devices. As a result, the obtained device without encapsulation retains more than 70% of its initial power conversion efficiency (PCE) after 14 days of exposure to a relative humidity of 40 ± 10%.

Graphical abstract: Enhanced moisture stability of metal halide perovskite solar cells based on sulfur–oleylamine surface modification

Back to tab navigation

Supplementary files

Article information


Submitted
04 Jul 2018
Accepted
27 Jul 2018
First published
30 Jul 2018

Nanoscale Horiz., 2019,4, 208-213
Article type
Communication

Enhanced moisture stability of metal halide perovskite solar cells based on sulfur–oleylamine surface modification

Y. Hou, Z. R. Zhou, T. Y. Wen, H. W. Qiao, Z. Q. Lin, B. Ge and H. G. Yang, Nanoscale Horiz., 2019, 4, 208
DOI: 10.1039/C8NH00163D

Social activity

Search articles by author

Spotlight

Advertisements