Jump to main content
Jump to site search


Geometry-driven carrier extraction enhancement in photovoltaic cells based on arrays of subwavelength light funnels

Author affiliations

Abstract

Texturing the front surface of thin film photovoltaic cells with ordered or disordered arrangements of subwavelength structures is beneficial in terms of efficient light harvesting as well as efficient carrier extraction. Previous studies demonstrated efficient broadband absorption of solar radiation with surface arrays of subwavelength inverted cones (light funnels – LFs). In the current work, we use three-dimensional finite-difference time-domain electromagnetic calculations as well as three-dimensional device calculations to examine carrier extraction from photovoltaic cells that are composed of LF arrays on top of underlying substrates. For the selected geometry under examination, we show a broadband absorption enhancement of 14% for the LF photovoltaic cell compared with a cell based on the respective optically optimized nanopillar arrays. However, we show that the nominal power conversion efficiency is 60% higher in the LF cell which is due to the enhancement of both open-circuit voltage and short-circuit current. The higher open-circuit voltage in the LF cell is due to the higher injection of photocarriers, and the higher short-circuit current is a result of the unique LF geometry that supports efficient carrier extraction due to the naturally occurring gradients of the quasi-Fermi levels and minority carrier conductivity that allow for enhanced contact selectivity. We believe that this work paves the way towards a new approach for carrier collection in photonic devices for energy applications.

Graphical abstract: Geometry-driven carrier extraction enhancement in photovoltaic cells based on arrays of subwavelength light funnels

Back to tab navigation

Publication details

The article was received on 21 Sep 2019, accepted on 14 Oct 2019 and first published on 15 Oct 2019


Article type: Paper
DOI: 10.1039/C9NA00599D
Nanoscale Adv., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Geometry-driven carrier extraction enhancement in photovoltaic cells based on arrays of subwavelength light funnels

    A. Prajapati and G. Shalev, Nanoscale Adv., 2019, Advance Article , DOI: 10.1039/C9NA00599D

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements