Jump to main content
Jump to site search


A Mn3O4 nanospheres@rGO architecture with capacitive effects on high potassium storage capability

Author affiliations

Abstract

A two dimensional (2D) Mn3O4@rGO architecture has been investigated as an anode material for potassium-ion secondary batteries. Herein, we report the synthesis of a Mn3O4@rGO nanocomposite and its potassium storage properties. The strong synergistic interaction between high surface area reduced graphene oxide (rGO) sheets and Mn3O4 nanospheres not only enhances the potassium storage capacity but also improves the reaction kinetics by offering an increased electrode/electrolyte contact area and consequently reduces the ion/electron transport resistance. Spherical Mn3O4 nanospheres with a size of 30–60 nm anchored on the surface of rGO sheets deliver a high potassium storage capacity of 802 mA h g−1 at a current density of 0.1 A g−1 along with superior rate capability even at 10 A g−1 (delivers 95 mA h g−1) and cycling stability. A reversible potassium storage capacity of 635 mA h g−1 is retained (90%) after 500 cycles even at a high current density of 0.5 A g−1. Moreover, the spherical Mn3O4@rGO architecture not only offers facile potassium ion diffusion into the bulk but also contributes surface K+ ion storage. The obtained results demonstrate that the 2D spherical Mn3O4@rGO nanocomposite is a promising anode architecture for high performance KIBs.

Graphical abstract: A Mn3O4 nanospheres@rGO architecture with capacitive effects on high potassium storage capability

Back to tab navigation

Supplementary files

Publication details

The article was received on 04 Jul 2019, accepted on 03 Sep 2019 and first published on 10 Sep 2019


Article type: Paper
DOI: 10.1039/C9NA00425D
Nanoscale Adv., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    A Mn3O4 nanospheres@rGO architecture with capacitive effects on high potassium storage capability

    C. Nithya, P. Vishnuprakash and S. Gopukumar, Nanoscale Adv., 2019, Advance Article , DOI: 10.1039/C9NA00425D

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements