Jump to main content
Jump to site search


Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations

Author affiliations

Abstract

MXenes are a rapidly growing family of 2D materials that exhibit a highly versatile structure and composition, allowing for significant tuning of the materials properties. These properties are, however, ultimately limited by the surface terminations, which are typically a mixture of species, including F and O that are inherent to the MXene processing. Other and robust terminations are lacking. Here, we apply high-resolution scanning transmission electron microscopy (STEM), corresponding image simulations and first-principles calculations to investigate the surface terminations on MXenes synthesized from MAX phases through Lewis acidic melts. The results show that atomic Cl terminates the synthesized MXenes, with mere residual presence of other termination species. Furthermore, in situ STEM-electron energy loss spectroscopy (EELS) heating experiments show that the Cl terminations are stable up to 750 °C. Thus, we present an attractive new termination that widely expands the MXenes' functionalization space and enables new applications.

Graphical abstract: Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 May 2019, accepted on 08 Jul 2019 and first published on 25 Jul 2019


Article type: Paper
DOI: 10.1039/C9NA00324J
Nanoscale Adv., 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations

    J. Lu, I. Persson, H. Lind, J. Palisaitis, M. Li, Y. Li, K. Chen, J. Zhou, S. Du, Z. Chai, Z. Huang, L. Hultman, P. Eklund, J. Rosen, Q. Huang and P. O. Å. Persson, Nanoscale Adv., 2019, Advance Article , DOI: 10.1039/C9NA00324J

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements