Jump to main content
Jump to site search

Issue 4, 2019
Previous Article Next Article

Enhanced charge separation in g-C3N4–BiOI heterostructures for visible light driven photoelectrochemical water splitting

Author affiliations

Abstract

Heterojunctions of the low bandgap semiconductor bismuth oxyiodide (BiOI) with bulk multilayered graphitic carbon nitride (g-C3N4) and few layered graphitic carbon nitride sheets (g-C3N4-S) are synthesized and investigated as an active photoanode material for sunlight driven water splitting. HR-TEM and elemental mapping reveals formation of a unique heterostructure between BiOI platelets and the carbon nitride (g-C3N4 and g-C3N4-S) network that consisted of dendritic BiOI nanoplates surrounded by g-C3N4 sheets. The presence of BiOI in g-C3N4-S/BiOI and g-C3N4-S/BiOI nanocomposites extends the visible light absorption profile from 500 nm up to 650 nm. Due to excellent charge separation in g-C3N4/BiOI and g-C3N4-S/BiOI, evident from quenching of the carbon nitride photoluminescence (PL) and a decrease in the PL lifetime, a significant increase in photoelectrochemical performance is observed for both types of g-C3N4–BiOI heterojunctions. In comparison to heterojunctions of bulk g-C3N4 with BiOI, the nanocomposite consisting of few layered sheets of g-C3N4 and BiOI exhibits higher photocurrent density due to lower recombination in few layered sheets. A synergistic trap passivation and charge separation is found to occur in the g-C3N4-S/BiOI nanocomposite heterostructure which results in a higher photocurrent and a lower charge transfer resistance.

Graphical abstract: Enhanced charge separation in g-C3N4–BiOI heterostructures for visible light driven photoelectrochemical water splitting

Back to tab navigation

Supplementary files

Publication details

The article was received on 01 Oct 2018, accepted on 06 Jan 2019 and first published on 07 Jan 2019


Article type: Paper
DOI: 10.1039/C8NA00264A
Citation: Nanoscale Adv., 2019,1, 1460-1471
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Enhanced charge separation in g-C3N4–BiOI heterostructures for visible light driven photoelectrochemical water splitting

    K. M. Alam, P. Kumar, P. Kar, U. K. Thakur, S. Zeng, K. Cui and K. Shankar, Nanoscale Adv., 2019, 1, 1460
    DOI: 10.1039/C8NA00264A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements