Jump to main content
Jump to site search


The surface hybridization of diamond with vertical graphene: a new route to diamond electronics

Author affiliations

Abstract

Herein a method is proposed for engineering the electronic properties (including the band structure) of diamond via surface hybridization with graphene. Graphene layers (5–50 nm in thickness) were grown vertically onto a polished 〈110〉 textured polycrystalline diamond plate (1 × 1 cm2) (vGr-diamond) at ∼1300 °C via hydrogen plasma etching in a chemical vapor deposition (CVD) chamber. Due to the crystallographic relationship, the graphene layers embed at an angle of 30° to the diamond surface comprising the (110) planes. The epitaxial relationship is demonstrated via low angle X-ray diffraction (XRD), the XRD rocking curve, Raman and scanning electron microscopy. With hybridization, the diamond sample reveals a strong photoluminescent (PL) signal at ∼2.78 eV (∼450 nm). The peak was assigned to the ‘interface defects’ of the vGr-diamond hybrid structure, which are a type of ‘surface defect’ of the CVD diamond that generates a peak at ∼2.69 eV. The blue shift (∼90 meV) of the interface defects is due to the compressive strain of ∼3% applied to the interface atoms. Simulations indicate that the hybrid structures possess a finite band gap of 1.85–0.25 eV, which decreases upon increasing the thickness of the graphene layers to ∼1.4 nm. The appearance of a small band gap was attributed to the compressive strain. These findings may provide a route for diamond to become a platform for next generation and extreme electronic devices.

Graphical abstract: The surface hybridization of diamond with vertical graphene: a new route to diamond electronics

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Oct 2019, accepted on 28 Oct 2019 and first published on 14 Nov 2019


Article type: Communication
DOI: 10.1039/C9MH01588D
Mater. Horiz., 2020, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    The surface hybridization of diamond with vertical graphene: a new route to diamond electronics

    K. P. S. S. Hembram, S. Lee, H. Im, H. Ju, S. Jeong and J. Lee, Mater. Horiz., 2020, Advance Article , DOI: 10.1039/C9MH01588D

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements