Issue 9, 2019

Immersion precipitation 3D printing (ip3DP)


Fabrication of controlled porous materials has gained interest because of their broad range of applications in energy storage, catalysis, biotechnology, and life sciences. The recent development of 3D printing has demonstrated the fabrication of 3D porous materials, albeit with limitations in the printable materials and the simplicity of the methods. In particular, direct dispensing of polymer solutions, solvent-casted 3D printing (SC3DP), requires the printing ink to possess high viscosity and high vapor pressure for 3D modelling. Herein, we introduce a unique and versatile method of 3D printing based on spatially controlled immersion precipitation, termed as immersion precipitation 3D printing (ip3DP). ip3DP offers the capability to fabricate 3D porous models using inks with wide ranges of vapor pressure and viscosity. Using a model ink of acrylonitrile butadiene styrene (ABS) dissolved in acetone (20–60% w/w), we demonstrated that the concentration of the polymer in the ink allowed control over the internal morphologies of the 3D printed structures ranging from complete porous microstructures (with pore sizes ranging from 1–20 μm) to dense nonporous microstructures. The addition of porogens to the printing inks demonstrated the fabrication of microscale pores reaching the surface of the printed filament, allowing the formation of interconnected pores. ip3DP offers an unprecedented route to fabricate micro-to-centimeter structures with controlled internal porosity in thermoplastics and serves as a useful toolkit in 3D printing of hierarchical structures and functional devices.

Graphical abstract: Immersion precipitation 3D printing (ip3DP)

Supplementary files

Article information

Article type
13 May 2019
05 Jul 2019
First published
08 Jul 2019

Mater. Horiz., 2019,6, 1834-1844

Immersion precipitation 3D printing (ip3DP)

R. Karyappa, A. Ohno and M. Hashimoto, Mater. Horiz., 2019, 6, 1834 DOI: 10.1039/C9MH00730J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity