Jump to main content
Jump to site search

Issue 7, 2019
Previous Article Next Article

Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation

Author affiliations

Abstract

Wireless micro- and nanorobots are biomedical devices with a potential use in high-precision minimally invasive therapies. Here, a highly integrated multifunctional soft microrobot is developed for targeted cell therapy applications, featuring targeted cell transportation and induced cell differentiation. The micromachines are made of composites consisting of a soft piezoelectric polymer matrix in which magnetic nanoparticles are dispersed. The magnetic nanoparticles serve as the component for the device's magnetic actuation, while the piezoelectric polymer acts as both a steerable scaffold and an acoustically responsive cell electrostimulation platform. With the application of a rotating magnetic field, the microrobots swim in a corkscrew motion in different liquid environments that mimic human body fluids. When the swimmers are subjected to acoustic waves, their piezoelectric body is electrically polarized which induces cell differentiation of neuron-like PC12 cells loaded on the swimmers surface. This combinatorial technique may open up new avenues for bioelectronic therapies.

Graphical abstract: Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation

Back to tab navigation

Supplementary files

Publication details

The article was received on 21 Feb 2019, accepted on 17 Apr 2019 and first published on 25 Apr 2019


Article type: Communication
DOI: 10.1039/C9MH00279K
Mater. Horiz., 2019,6, 1512-1516
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation

    X. Chen, J. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q. Shen, B. J. Nelson and S. Pané, Mater. Horiz., 2019, 6, 1512
    DOI: 10.1039/C9MH00279K

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements