Issue 5, 2019

The role of charge-matching in nanoporous materials formation

Abstract

Unravelling the molecular-level mechanisms that lead to the formation of mesoscale-ordered porous materials is a crucial step towards the goal of computational material design. For silica templated by alkylamine surfactants, a mechanism based on hydrogen-bond interactions between neutral amines and neutral silicates in solution has been widely accepted by the materials science community, despite the lack of conclusive evidence to support it. We demonstrate, through a combination of experimental measurements and multi-scale modelling, that the so-called “neutral templating route” does not represent a viable description of the synthesis mechanism of hexagonal mesoporous silica (HMS), the earliest example of amine-templated porous silica. Instead, the mesoscale structure of the material is defined by charge-matching of ionic interactions between amines and silicates. This has profound implications for the synthesis of a wide range of templated porous materials, and may shed new light on developing sustainable and economical routes to high value porous materials.

Graphical abstract: The role of charge-matching in nanoporous materials formation

Supplementary files

Article information

Article type
Communication
Submitted
21 Dec 2018
Accepted
05 Feb 2019
First published
08 Feb 2019

Mater. Horiz., 2019,6, 1027-1033

The role of charge-matching in nanoporous materials formation

A. Centi, J. R. H. Manning, V. Srivastava, S. van Meurs, S. V. Patwardhan and M. Jorge, Mater. Horiz., 2019, 6, 1027 DOI: 10.1039/C8MH01640B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements