Jump to main content
Jump to site search


Druggability assessment of mammalian PAS domains using computational approaches

Abstract

Per-Arnt-Sim (PAS) domains are key regions that occur in different regulatory proteins from all kingdoms of life. PAS domains show a remarkably conserved structural scaffold, despite a highly variable primary sequence. In this study we have attempted to address some of the gaps in knowledge regarding druggability of PAS-A domains, differences in structure and dynamics within the PAS domain family and how this affects druggability potential, as well attempting to give insight into the druggability of steroid receptor coactivators and putative binding modes of the NCOA1. Investigations were performed through a range of computational methods including molecular docking studies, atomistic molecular dynamics simulations, as well as hotspot mapping. Atomistic molecular dynamics simulations show that the function of the AhR PAS-B domain is regulated by the dynamics of highly conserved tyrosine Y322 residue, which acts as a “gatekeeper” controlling the access to the binding cavity and finely tuning the binding affinity. Furthermore, the transition between the partially unfolded and helical conformation of the loop1 segment within PAS-B domains was showed to be essential for the generation of “druggable” sites, especially for NCOA1 PAS-B domain. Finally, our simulations indicated the "undrugabillity" of PAS-A domains, caused by the inherent characteristics of their putative binding sites. In conclusion, this work emphasises the role of intrinsic dynamics in tuning the druggability of PAS-B domains and shows that PAS-B domains of steroid receptor coactivators, such as NCOA1, can be targeted by small molecule ligands, which highlights the potential of developing new therapeutics designed to target these coactivators using structure-based approaches.

  • This article is part of the themed collection: New Talent
Back to tab navigation

Supplementary files

Publication details

The article was received on 09 Mar 2019, accepted on 01 May 2019 and first published on 13 May 2019


Article type: Research Article
DOI: 10.1039/C9MD00148D
Med. Chem. Commun., 2019, Accepted Manuscript

  •   Request permissions

    Druggability assessment of mammalian PAS domains using computational approaches

    J. de Souza, S. Reznikov, R. Zhu and A. K. Bronowska, Med. Chem. Commun., 2019, Accepted Manuscript , DOI: 10.1039/C9MD00148D

Search articles by author

Spotlight

Advertisements