Jump to main content
Jump to site search


Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test

Author affiliations

Abstract

Using an antimicrobial susceptibility test (AST) as an example, this work demonstrates a practical method to fabricate microfluidic chips entirely from polypropylene (PP) and the benefits for potential commercial use. Primarily caused by the misuse and abuse of antibiotics, antimicrobial resistance (AMR) is a major threat to modern medicine. The AST is a promising technique to help with the optimal use of antibiotics for reducing AMR. However, current phenotypic ASTs suffer from long turnaround time, while genotypic ASTs suffer from low reliability, and both are unaffordable for routine use. New microfluidics based AST methods are rapid but still unreliable as well as costly due to the PDMS chip material. Herein, we demonstrate a convenient method to fabricate whole PP microfluidic chips with high resolution and fidelity. Unlike PDMS chips, the whole PP chips showed better reliability due to their inertness; they are solvent-compatible and can be conveniently reused and recycled, which largely decreases the cost, and are environmentally friendly. We specially designed 3D chambers that allow for quick cell loading without valving/liquid exchange; this new hydrodynamic design satisfies the shear stress requirement for on-chip bacterial culture, which, compared to reported designs for similar purposes, allows for a simpler, more rapid, and high-throughput operation. Our system allows for reliable tracking of individual cells and acquisition of AST results within 1–3 hours, which is among the group of fastest phenotypic methods. The PP chips are more reliable and affordable than PDMS chips, providing a practical solution to improve current culture-based AST and benefiting the fight against AMR through helping doctors prescribe effective, narrow-spectrum antibiotics; they will also be broadly useful for other applications wherein a reliable, solvent-resistant, anti-fouling, and affordable microfluidic chip is needed.

Graphical abstract: Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 May 2019, accepted on 23 Jul 2019 and first published on 23 Jul 2019


Article type: Paper
DOI: 10.1039/C9LC00502A
Lab Chip, 2019, Advance Article

  •   Request permissions

    Reliable and reusable whole polypropylene plastic microfluidic devices for a rapid, low-cost antimicrobial susceptibility test

    H. Sun, C. Chan, Y. Wang, X. Yao, X. Mu, X. Lu, J. Zhou, Z. Cai and K. Ren, Lab Chip, 2019, Advance Article , DOI: 10.1039/C9LC00502A

Search articles by author

Spotlight

Advertisements