Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 16, 2019
Previous Article Next Article

Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation

Author affiliations

Abstract

Spatially arranged polymer brushes provide the essential capability of precisely regulating the surface physicochemical and functional properties of various substrates. A novel and flexible polymer brush patterning methodology, which is based on employing a digital mirror device (DMD)-based light modulation technique to spatiotemporally regulate a surface-initiated photoinduced atom transfer radical polymerization (photo-ATRP) process, is presented. Various characterization techniques confirm that the spatially and/or temporally controlled brush formation results in complex PEG-derived brush patterns in accordance with a customized digital image design. A series of step-and-exposure strategies, including in situ multiple exposure, dynamic multiple exposure and dynamic sequential exposure, are developed to implement spatiotemporal regulation of the photo-ATRP process, leading to complex patterned and gradient brushes featuring binary functionalities, pyramid nanostructures and radial directional chemical gradients. Moreover, tunable and radial directional concentration gradients of various biomacromolecules (e.g., streptavidin) are obtained through preparation of height gradients of azido-functionalized brushes and subsequent orthogonal chemical activation aimed at specific protein immobilization. Finally, a unidirectional concentration gradient of fibronectin, surrounded by non-fouling PEG brushes, is fabricated and applied for human umbilical vein endothelial cell (HUVEC) adhesion experiments, whose preliminary results indicate gradient-dependent cell adhesion behavior in response to the concentration gradient of fibronectin. The presented fabrication technique could be integrated with microfluidic devices for sensors and bio-reactors, paving the way for novel approaches for lab-on-a-chip technologies.

Graphical abstract: Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation

Back to tab navigation

Supplementary files

Article information


Submitted
01 May 2019
Accepted
21 Jun 2019
First published
24 Jun 2019

Lab Chip, 2019,19, 2651-2662
Article type
Paper

Spatiotemporal control of polymer brush formation through photoinduced radical polymerization regulated by DMD light modulation

H. Zhao, J. Sha, X. Wang, Y. Jiang, T. Chen, T. Wu, X. Chen, H. Ji, Y. Gao, L. Xie and Y. Ma, Lab Chip, 2019, 19, 2651
DOI: 10.1039/C9LC00419J

Social activity

Search articles by author

Spotlight

Advertisements