Jump to main content
Jump to site search

Issue 8, 2019
Previous Article Next Article

3D impedimetric sensors as a tool for monitoring bacterial response to antibiotics

Author affiliations

Abstract

The presence of antimicrobial contaminants like antibiotics in the environment is a major concern because they promote the emergence and the spread of multidrug resistant bacteria. Since the conventional systems for the determination of bacterial susceptibility to antibiotics rely on culturing methods that require long processing times, the implementation of novel strategies is highly required for fast and point-of-care applications. Here the development and characterization of a novel label-free biosensing platform based on a microbial biosensor approach to perform antibiotic detection bioassays in diluted solution is presented. The microbial biosensor is based on a three-dimensional interdigitated electrode array (3D-IDEA) impedimetric transducer with immobilized E. coli bacteria. In 3D-IDEA to increase the sensitivity to superficial impedance changes the electrode digits are separated by insulating barriers. A novel strategy is employed to selectively immobilize bacteria in the spaces over the electrode digits between the barriers, referred to here as trenches, in order to concentrate bacteria, improve the reproducibility of the E. coli immobilization and increase the sensitivity for monitoring bacterial response. For effective attachment of bacteria within the trenches an initial anchoring layer of a highly charged polycation, polyethyleneimine (PEI), was used. To facilitate immobilization of bacteria within the trenches and prevent their deposition on top of the barriers an important novelty is the use of poly(N-isopropylmethacrylamide) p(NIPMAM) microgels working as antifouling agents, deposited on top of the barriers by microcontact printing. The reported microbial biosensor approach allows the bacterial response to ampicillin, a bacteriolytic antibiotic, to be registered by means of impedance variations in a rapid and label-free operation that enables new possibilities in bioassays for toxicity testing.

Graphical abstract: 3D impedimetric sensors as a tool for monitoring bacterial response to antibiotics

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Nov 2018, accepted on 19 Feb 2019 and first published on 20 Feb 2019


Article type: Paper
DOI: 10.1039/C8LC01220B
Lab Chip, 2019,19, 1436-1447
  • Open access: Creative Commons BY license
  •   Request permissions

    3D impedimetric sensors as a tool for monitoring bacterial response to antibiotics

    S. Brosel-Oliu, O. Mergel, N. Uria, N. Abramova, P. van Rijn and A. Bratov, Lab Chip, 2019, 19, 1436
    DOI: 10.1039/C8LC01220B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements