Jump to main content
Jump to site search


Intercomparison measurements of two 33S-enriched sulfur isotope standards

Author affiliations

Abstract

Despite widespread applications of sulfur isotope mass-independent fractionation (MIF) signals for probing terrestrial and extra-terrestrial environments, there has been no international sulfur isotope reference material available for normalization of Δ33S and Δ36S data. International reference materials to anchor isotope values are useful for interlaboratory data comparisons and are needed to evaluate, e.g., whether issues exist associated with blanks and mass spectrometry when using different analytical approaches. We synthesized two sodium sulfate samples enriched in 33S with different magnitudes, and termed them S-MIF-1 and S-MIF-2, respectively. The sulfur isotopic compositions of these two samples were measured in five different laboratories using two distinct techniques to place them on the V-CDT scale for δ34S and a provisional V-CDT scale for Δ33S and Δ36S. We obtained average δ34S values of S-MIF-1 = 10.26 ± 0.22‰ and S-MIF-2 = 21.53 ± 0.26‰ (1σ, versus V-CDT). The average Δ33S and Δ36S values of S-MIF-1 were determined to be 9.54 ± 0.09‰ and −0.11 ± 0.25‰, respectively, while the average Δ33S and Δ36S values of S-MIF-2 are 11.39 ± 0.08‰ and −0.33 ± 0.13‰ (1σ, versus V-CDT). The lack of variation among the interlaboratory isotopic values suggests sufficient homogeneity of S-MIF-1 and S-MIF-2, especially for Δ33S. Although additional measurements may be needed to ensure the accuracy of the isotopic compositions of S-MIF-1 and S-MIF-2, they can serve as working standards for routine Δ33S analysis to improve data consistency, and have the potential to serve as secondary sulfur isotope reference materials to address issues such as scale contraction/expansion and for normalization and reporting of Δ33S and Δ36S between laboratories. For the same reasons as listed for sulfur isotopes, the same standards were also artificially enriched in 17O. The calibration is still in progress but first estimations gave Δ17O = 3.3 ± 0.3‰ with unassigned δ18O.

Graphical abstract: Intercomparison measurements of two 33S-enriched sulfur isotope standards

Back to tab navigation

Publication details

The article was received on 26 Jan 2019, accepted on 28 Feb 2019 and first published on 18 Mar 2019


Article type: Technical Note
DOI: 10.1039/C8JA00451J
Citation: J. Anal. At. Spectrom., 2019, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    Intercomparison measurements of two 33S-enriched sulfur isotope standards

    L. Geng, J. Savarino, N. Caillon, E. Gautier, J. Farquhar, J. W. Dottin III, N. Magalhães, S. Hattori, S. Ishino, N. Yoshida, F. Albarède, E. Albalat, P. Cartigny, S. Ono and M. H. Thiemens, J. Anal. At. Spectrom., 2019, Advance Article , DOI: 10.1039/C8JA00451J

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements