Jump to main content
Jump to site search


A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball-milling of cellulose

Abstract

Cellulose, the most abundant polymer on earth, and its composites have recently gained importance for the production of sustainable materials. These materials should be produced using green methods that avoid utilization of toxic chemicals to ensure integrity for environmental sustainability. Ball-milling, which gives straightforward and (often) green synthetic access to materials, can be used to achieve this goal. Previously, it was shown that mechanochemical bond breakages in polymers generate mechanoradicals, which can be used to drive further reactions and to form polymer composites. In this study, we show that cellulose mechanoradicals generated during ball-milling of cellulose can reduce various metal ions to the corresponding metal nanoparticles (NPs) (Au, Ag, Pt, Pd, Co, and Cu), which are deposited and stabilized in the cellulose matrix. Using mechanoradicals to reduce the metal ions and form the cellulose composites; 1) the number of synthetic steps is reduced, 2) the conventionally used, toxic reducing and stabilizing agents are avoided, which also prevents contamination of the composites. The cellulose-metal nanoparticle composites can exhibit a wide range of properties that depend on the metal nanoparticle in the composite; e.g., Au-cellulose nanocomposites display catalytic activity, and Ag-cellulose nanocomposites show antibacterial property. The ball-milling method also permits blend formation using synthetic polymers, that allows tuning the physical properties of the final material. Finally, the method shown here is a quick access to versatile metal nanoparticle cellulose composites (and their blends), which may find applications, such as in paper-based diagnostics and catalysis.

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Aug 2019, accepted on 26 Nov 2019 and first published on 26 Nov 2019


Article type: Paper
DOI: 10.1039/C9GC02781E
Green Chem., 2019, Accepted Manuscript

  •   Request permissions

    A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball-milling of cellulose

    J. Kwiczak, Ö. Laçin, M. Demir, R. Ahan, U. O. S. Seker and B. Baytekin, Green Chem., 2019, Accepted Manuscript , DOI: 10.1039/C9GC02781E

Search articles by author

Spotlight

Advertisements