Jump to main content
Jump to site search


Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: Direct high-density ethanol production with competitive life cycle impacts

Abstract

Microalgae has attracted increasing attention as a potential feedstock for biofuel production. However, direct high-density ethanol production from microalgae is not commercially feasible due to the requirement for complex pre-treatments and insufficient enzymatic hydrolysis. In this study, we successfully developed a consolidated bioprocessing (CBP) system using recombinant Saccharomyces cerevisiae displaying synergistic cellulases/amylases on cell surfaces to overcome energy-conversion limitations. As Chlamydomonas sp. JSC4 can accumulate considerable amounts of carbohydrates and pigments (i.e., lutein), performing four rounds of pigment extraction from wet microalgal biomass using acetone, was found to significantly eliminate the need for biomass pre-treatment and increase commercial viability. The pigment-extracted JSC4 residues increased ethanol production by 10.7% and 31.6% compared to raw starch and whole JSC4 cells, respectively. The theoretical ethanol production mass and yield from 300 g/L of JSC4 material was 73 g/L and 64%, respectively, after fermentation for 72 h in the presence of amylase- and cellulase-displaying yeasts, which is dramatically higher than previously reported. Life cycle assessment (LCA) further revealed that this CBP system exhibits 2.7- to 10.7-fold lower total environmental impacts than alternative ethanol production methods using microalgal biomass. 2.43 kg ethanol and additional products of 5 g lutein from 1 kg microalgal biomass significantly increased total economic output to $60.875. Overall, this study successfully demonstrates a feasiable cell-displayed frementation system for use in direct high-density ethanol production from pigment-extracted microalgal material.

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Jul 2019, accepted on 02 Nov 2019 and first published on 04 Nov 2019


Article type: Paper
DOI: 10.1039/C9GC02634G
Green Chem., 2019, Accepted Manuscript

  •   Request permissions

    Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: Direct high-density ethanol production with competitive life cycle impacts

    X. Huang, S. Bai, Z. Liu, T. Hasunuma, A. Kondo and S. Ho, Green Chem., 2019, Accepted Manuscript , DOI: 10.1039/C9GC02634G

Search articles by author

Spotlight

Advertisements