Jump to main content
Jump to site search


Regioselective synthesis, isomerisation, in vitro oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers

Author affiliations

Abstract

Bisguaiacol F (BGF), a potentially safer and renewable bisphenol A (BPA) replacement made from lignin-derivable vanillyl alcohol (p-VA), is a promising building block for future aromatic biopolymers. Unfortunately, like BPA synthesis, this electrophilic condensation reaction is also prone to regioselectivity issues, giving rise to m,p′- and o,p′-BGF byproducts. In this work, the hitherto unconsidered influence of m,p′-BGF, viz. the main isomeric byproduct of p,p′-BGF synthesis, on the physicochemical properties of poly(BGF carbonate) (BGF-PC) was systematically investigated by random copolymerisation with different fractions of pure m,p′-BGF (25, 50 and 75 wt%). To do so, the elusive m,p′-isomer was made in unparalleled regioselectivity (72%) by alkylation condensation of isovanillyl alcohol (m-VA) with guaiacol. Surprisingly, no isomeric scrambling due to acid-catalysed isomerisation was encountered for pure BGF isomers, which strongly facilitates their synthesis in contrast to petrochemical bisphenol F (BPF). Furthermore, to ensure safer chemical design, an in vitro human oestrogen receptor α (hERα) transactivation assay was performed. Both pure m,p′- and p,p′-BGF displayed a significantly reduced oestrogenic potency (∼426–457 times lower affinity than BPA) and oestrogenic efficacy (∼39–50% of BPA's maximum induction). Interestingly, mutual comparison between p,p′-BPF and p,p′-BGF reveals and proves for the first time the direct link between ortho-methoxy substitution and reduced in vitro oestrogenic activity (for transactivation of hERα). In contrast to o,p′-BPA, viz. the main byproduct of p,p′-BPA synthesis, m,p′-BGF was proven suitable for utilization in thermoplastics, thereby avoiding time-consuming and labour-intensive (re)crystallizations to obtain regioisomerically pure p,p′-BGF.

Graphical abstract: Regioselective synthesis, isomerisation, in vitro oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Jul 2019, accepted on 02 Oct 2019 and first published on 03 Oct 2019


Article type: Paper
DOI: 10.1039/C9GC02619C
Green Chem., 2019, Advance Article

  •   Request permissions

    Regioselective synthesis, isomerisation, in vitro oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers

    S. Koelewijn, D. Ruijten, L. Trullemans, T. Renders, P. Van Puyvelde, H. Witters and B. F. Sels, Green Chem., 2019, Advance Article , DOI: 10.1039/C9GC02619C

Search articles by author

Spotlight

Advertisements