Jump to main content
Jump to site search


A facile and mild strategy to fabricate underwater superoleophobic and underoil superhydrophobic mesh with outstanding anti-viscous oil-fouling property for switchable high viscosity oil/water separation

Abstract

Underwater superoleophobic and underoil superhydrophobic materials have distinct advantages for switchable oil-water separation. Although some strategies have been developed to fabricate these materials, harsh conditions such as high temperature and pressure, abundant harmful organic solvent and complicated devices are usually needed, limiting their practical applications. Moreover, due to the highly adhesive property of some oils such as crude oil, the anti-viscous oil-fouling performance of usual superwetting material is still unsatisfactory. Herein, based on corrosion process and mussel-inspired surface coating, we have developed a mild and eco-friendly route to transform iron mesh into underwater superoleophobic and underoil superhydrophobic materials for switchable high viscosity oil-water separation. The corrosion process can generate microsphere-nanosheet structures(MNS) composed by microspheres and abundant nanosheet array on the iron mesh surface, while the subsequent mussel-inspired surface coating can form compact layer to protect the MNS from damage, finally endowing the resultant mesh with durable underwater superoleophobicity and underoil superhydrophobicity. Significantly, the resultant mesh exhibits excellent anti-crude oil-fouling property, and can separate various oil-water mixtures with high efficiency (all above 98%). Moreover, after immersion in acidic or basic solutions, the wetting properties of the mesh showed no apparent variation, demonstrating that the mesh possesses a desirable environmental stability. According to the dual superlyophobic property of the as-prepared mesh in water-oil systems, a dual-channel device has been designed to realize the continuous separation of crude oil-water mixture with high efficiency (above 93% after 30 cycles). This strategy may open a new avenue to prepare high-performance separation materials for viscosity oil-water separation.

Back to tab navigation

Supplementary files

Publication details

The article was received on 25 Jun 2019, accepted on 13 Aug 2019 and first published on 13 Aug 2019


Article type: Paper
DOI: 10.1039/C9GC02129A
Green Chem., 2019, Accepted Manuscript

  •   Request permissions

    A facile and mild strategy to fabricate underwater superoleophobic and underoil superhydrophobic mesh with outstanding anti-viscous oil-fouling property for switchable high viscosity oil/water separation

    J. Zhang, L. Zhang, J. Zhao, W. Qu and Z. Wang, Green Chem., 2019, Accepted Manuscript , DOI: 10.1039/C9GC02129A

Search articles by author

Spotlight

Advertisements