Jump to main content
Jump to site search

Issue 16, 2019
Previous Article Next Article

Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts

Author affiliations

Abstract

Approaches for the catalytic oxidation of biomass-based 5-hydroxymethylfurfural (HMF) into valuable chemicals are in great demand; however, their development is still challenging. Herein, we present nitrogen-doped manganese oxide (N-MnO2) catalysts that possess extraordinary catalytic performance (a >99.9% 2,5-diformylfuran selectivity, a 100% HMF conversion, and decent reusability) at room temperature without any additives. Structural changes, i.e. slight elongation of the Mn–O bonds and reduction of the coordination number of Mn sites, occur after doping of nitrogen into MnO2, as confirmed via characterization by extended X-ray absorption fine structure (EXAFS), H2-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). Mechanistic studies indicate that surface defect sites and coordinatively unsaturated Mn sites induced by nitrogen doping play a key role in promoting the oxidative activity.

Graphical abstract: Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts

Back to tab navigation

Associated articles

Supplementary files

Article information


Submitted
29 Mar 2019
Accepted
13 May 2019
First published
14 May 2019

Green Chem., 2019,21, 4313-4318
Article type
Communication

Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts

Q. Ke, Y. Jin, F. Ruan, M. N. Ha, D. Li, P. Cui, Y. Cao, H. Wang, T. Wang, V. N. Nguyen, X. Han, X. Wang and P. Cui, Green Chem., 2019, 21, 4313
DOI: 10.1039/C9GC01041F

Social activity

Search articles by author

Spotlight

Advertisements