Issue 4, 2019

Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

Abstract

Production of citrus flavonoids prunin and naringenin was performed selectively through the enzyme hydrolysis of naringin, a flavonoid glycoside abundant in grapefruit wastes. To produce the monoglycoside flavonoid, prunin, crude naringinase from Penicillium decumbens was purified by a single purification step resulting in an enzyme with high α-rhamnosidase activity. Both crude and purified enzymes were covalently immobilized on graphene oxide. The activity of the immobilized enzymes at different pH levels and temperatures, and the thermal stability were determined and compared with those exhibited by the free naringinases using specific substrates: p-nitrophenyl-β-D-glucoside (Glc-pNP) and p-nitrophenyl-alpha-L-rhamnopyranoside (Rha-pNP). The crude and purified naringinase supported on GO were tested in the hydrolysis of naringin, giving naringenin and prunin, respectively, in excellent yields. The supported enzymes can be reused many times without loss of activity. The naringinase stabilized on GO has high potential to produce the valuable citrus flavonoids prunin and naringenin.

Graphical abstract: Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2018
Accepted
23 Jan 2019
First published
31 Jan 2019

Green Chem., 2019,21, 839-849

Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide

J. M. Carceller, J. P. Martínez Galán, R. Monti, J. C. Bassan, M. Filice, S. Iborra, J. Yu and A. Corma, Green Chem., 2019, 21, 839 DOI: 10.1039/C8GC03661F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements