Ergostatrien-7,9(11),22-trien-3β-ol from Antrodia camphorata ameliorates ischemic stroke brain injury via downregulation of p65NF-κ-B and caspase 3, and activation of Akt/GSK3/catenin-associated neurogenesis
Abstract
Antrodia camphorata is a well-known traditional Chinese mushroom used as a functional food and nutraceutical in Taiwan and China. The aim of this study was to explore the protective effects and mechanism(s) of the ethyl acetate crude extract of A. camphorata (EtOAc-AC) and its active constituent ergostatrien-7,9(11),22-trien-3β-ol (EK100) in an acute ischemic stroke (AIS) murine model. Treating mice with induced AIS injury by using EtOAc-AC (0.3–0.6 g kg−1, p.o.) and EK100 (60 and 120 mg kg−1, p.o.) 2 h after AIS induction significantly increased the tracking distance and reduced brain infarction. Both EtOAc-AC and EK-100 reduced the expression levels of p65NF-κB and caspase 3 near the peri-infarct cortex and promoted the expression of neurogenesis-associated protein doublecortin (DCX) near the hippocampus, accompanied by glycogen synthase kinase 3 (GSK-3) inhibition and β-catenin upregulation. Signaling pathway analysis revealed that the advantageous effects of EtOAc-AC and EK-100 involved triggering the activation of PI3K/Akt and inhibition of GSK-3. Our findings suggest that EtOAc-AC and its active constituent EK100 display anti-inflammatory and anti-apoptotic activities. Both EtOAc-AC and EK100 reduce ischemic brain injury by decreasing p65NF-κB and caspase 3 expression, and they promote neurogenesis (DCX) and neuroprotection (Bcl2) by activating the PI3k/Akt-associated GSK3 inhibition and β-catenin activation.