Issue 7, 2019

DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress

Abstract

Acute gouty inflammation could be triggered by phagocytosis of monosodium urate (MSU) by immune cells. This study investigated the protective effect and underlying mechanism of docosahexaenoic acid (DHA) on MSU-induced inflammation in vitro and in vivo. Results showed that DHA effectively inhibited MSU-induced expression and secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in THP-1 cells. Intracellular reactive oxygen species (ROS) production triggered by MSU was alleviated by DHA treatment. Furthermore, DHA promoted the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), wherein Nrf2 further mediated the expression of multiple antioxidant enzymes such as, heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase-1 (NQO1) and catalase, which are closely related with redox homeostasis. DHA treatment also restored MSU-induced impairment of mitochondrial transmembrane potential. In addition, oral administration of DHA-rich microalgal oil to C57BL/6 mice effectively reduced the infiltration of neutrophils, and decreased the expression and secretion of inflammatory cytokines. Altogether, our results suggest that DHA or DHA-rich microalgal oil may be a promising natural agent for the prevention of MSU-induced inflammation and potentially acute gout at least partly by attenuating oxidative stress.

Graphical abstract: DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress

Article information

Article type
Paper
Submitted
19 Mar 2019
Accepted
01 Jun 2019
First published
03 Jun 2019

Food Funct., 2019,10, 4010-4021

DHA protects against monosodium urate-induced inflammation through modulation of oxidative stress

Y. Zhang, L. Liu, D. Sun, Y. He, Y. Jiang, K. Cheng and F. Chen, Food Funct., 2019, 10, 4010 DOI: 10.1039/C9FO00573K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements