Jump to main content
Jump to site search


The Added Value of a Zebrafish Embryo-Larval Model in the Assessment of Wastewater Tertiary Treatments.

Abstract

Conventional treatment technologies applied in wastewater treatment plants are no efficient to remove pharmaceuticals from effluents. Consequently, an ever-growing presence of these emerging contaminants has been reported in the aquatic environment. There is great concern about their potential adverse effects in organisms, and increasing interest in technologies to minimize these effects. More efficient technologies are needed to solve these problems. The aim of this study was to evaluate the efficiency and safety of two wastewater tertiary treatments. A mixture of 9 pharmaceuticals (acetaminophen, norfloxacin, metoprolol, caffeine, antipyrine, sulfamethoxazole, ketorolac, hydroxybiphenyl and diclofenac at 10 mg L-1 each) was added into a wastewater sample to further be ozonated and subjected to photocatalytic oxidation (black-light radiation/TiO2/O2) at different time regime (30, 120 min). Resultant effluents were assessed for chemical efficacy (Total Organic Carbon and Chemical Oxygen Demand) and toxicity (through a zebrafish embryo-larval bioassay including mortality and sublethal effects). Ozonation (120 min) and photocatalytic oxidation (30 min, 120 min) were effective processes to decrease both Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD), the latter under Directive 91/271/CEE recommended values. However, only the effluent subjected to 120 min photocatalytic oxidation was actually safe to the embryo-larval development and their functionality, with behavioral effects as the most sensitive endpoint. Thus, the toxic response of the zebrafish embryo-larval model resulted to be more sensitive than the effluent physical-chemical monitoring itself, providing a tool to better characterize the wastewater suitability.

Back to tab navigation

Publication details

The article was received on 16 May 2019, accepted on 08 Oct 2019 and first published on 11 Oct 2019


Article type: Paper
DOI: 10.1039/C9EW00411D
Environ. Sci.: Water Res. Technol., 2019, Accepted Manuscript

  •   Request permissions

    The Added Value of a Zebrafish Embryo-Larval Model in the Assessment of Wastewater Tertiary Treatments.

    J. P. García Cambero, F. Beltran, Á. Encinas, F. J. Rivas and A. L. Oropesa, Environ. Sci.: Water Res. Technol., 2019, Accepted Manuscript , DOI: 10.1039/C9EW00411D

Search articles by author

Spotlight

Advertisements