Issue 5, 2019

Rejection of micron-sized particles using beech wood xylem

Abstract

The rejection of micron-sized particles mimicking the size of microorganisms responsible for waterborne diseases (such as protozoans) by filters made of wood tissue has been investigated in a dead-end filtration setup. The permeability reached up to 12 000 L m−2 h−1 per bar but a great variability has been observed for the wood filters. The swelling of the samples has been found to be the reason for the drop in permeability over long-term experiments (8 h). After drying the filter for 24 h at 65 °C, the initial permeability could be recovered, hence, this behaviour is reversible. The surrogates used in this study have a size of 5 and 20 μm and their electrostatic properties exclude potential electrostatic interactions. Hence, the removal of the particles occurs only through physical sieving. Microscopy investigations suggest that the surface of the wood as well as anatomical features, such as perforations, contribute to the removal of the particles. The log-removal value (LRV) of the filter depended on the size of the surrogates. In addition, the formation of a filter cake increased the LRV over time for both particle sizes used in this study. A prediction of the LRV has been calculated based on the pore size distribution of the filter rendered by image analysis. The results of the prediction are in accordance with the experimental observations.

Graphical abstract: Rejection of micron-sized particles using beech wood xylem

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2018
Accepted
19 Mar 2019
First published
25 Mar 2019
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Water Res. Technol., 2019,5, 944-955

Rejection of micron-sized particles using beech wood xylem

S. Vitas, P. Beckmann, B. Skibinski, C. Goldhahn, L. F. Muff and E. Cabane, Environ. Sci.: Water Res. Technol., 2019, 5, 944 DOI: 10.1039/C8EW00774H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements