Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 1, 2019
Previous Article Next Article

Membrane-separated electrochemical latrine wastewater treatment

Author affiliations


Electrolysis is demonstrated to be useful for onsite latrine wastewater treatment. Improved wastewater treatment efficiencies are achieved through the use of a combination of cation and anion exchange membranes (CEM/AEM) in electrochemical reactors. Compared to a membrane-free electrolysis cell, the separation of anodic and cathodic chambers using a CEM separator is shown to reduce energy consumption by 51% for COD removal and 87% for NH4+ removal. Furthermore, 51% of the initial [NH4+]0 is recovered via electrodialysis. CEM-separated electrolysis is shown to produce 39% less ClO3 and 92% less chlorinated organic by-products than in a membrane-free reactor. Helminth (Ascaris suum) eggs, which yield parasitic worms, are very resistant to conventional disinfection methods. Membrane-free electrolysis only inactivates 15% of the dosed helminth eggs (100 eggs per mL). In CEM-separated electrolysis, a combination of low pH and in situ chlorine production in the anodic chamber results in 85% inactivation of helminth eggs. In addition, H2, which is produced in the cathodic chamber of the CEM-separated reactor, is directly converted to electricity using a hydrogen–air fuel cell. The hydrogen energy produced during electrolysis is estimated to reduce the overall energy cost of operation by 20%. Recovery of 85% of the initial [PO43−]0 and pH neutralization are achieved by treating the acidic effluent of a CEM-separated electrolysis cell in an AEM-separated electrolysis cell. A one-month continuous operation demonstrates the potential of using both the CEM and AEM during electrolysis to achieve more efficient wastewater treatment while, at the same time, recovering NH4+ and PO43−, for eventual use as agricultural fertilizers.

Graphical abstract: Membrane-separated electrochemical latrine wastewater treatment

Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Oct 2018, accepted on 08 Nov 2018 and first published on 20 Nov 2018

Article type: Paper
DOI: 10.1039/C8EW00698A
Citation: Environ. Sci.: Water Res. Technol., 2019,5, 51-59

  •   Request permissions

    Membrane-separated electrochemical latrine wastewater treatment

    Y. Yang, L. Lin, L. K. Tse, H. Dong, S. Yu and M. R. Hoffmann, Environ. Sci.: Water Res. Technol., 2019, 5, 51
    DOI: 10.1039/C8EW00698A

Search articles by author