Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 2, 2019
Previous Article Next Article

Removal of poly- and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies

Author affiliations

Abstract

Exceptional properties at the nano-scale, if appropriately harnessed, will lead to innovations in water treatment. Nanomaterials can enable treatment processes with accelerated reaction kinetics, self-healing or self-regeneration abilities, and a high degree of selectivity for targeted pollutant removal. These materials can also introduce new pathways for the removal of contaminants that are challenging to degrade employing traditional techniques. One such class of contaminants is poly- and per-fluoroalkyl substances (PFAS), which are widely detected in waterways of the U.S. and drinking water supplies. The U.S. Environmental Protection Agency (EPA) has listed two PFAS (i.e., perfluorooctanesulfonic acid or PFOS and perfluorooctanoic acid or PFOA) in the Contaminant Candidate List and recently has revised the lifetime health advisories. PFAS molecules are persistent in the environment over long periods because they are not photolyzed or biodegraded. Current mitigation technologies mostly depend on non-destructive phase transfer processes (e.g., adsorption, filtration, or ion exchange) which results in a concentrated waste stream. Few destructive mitigation methods transform PFAS by cleaving C–C bonds but it is not clear if the transformation products (e.g., shorter chain PFAS) are less toxic or less persistent. Thus, the central challenge for PFAS transformation lies in cleaving the strong C–F bonds. Nanomaterials can enable treatment options by providing high-energy reaction pathways; e.g., electrolysis, thermolysis, or photolysis. This perspective aims to present a critical review on reported PFAS removal/destruction techniques, provide molecular-level insights into possible removal/destruction pathways, and propose potential nano-enabled remediation options for these persistent contaminants.

Graphical abstract: Removal of poly- and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies

Back to tab navigation

Article information


Submitted
05 Sep 2018
Accepted
10 Dec 2018
First published
11 Dec 2018

Environ. Sci.: Water Res. Technol., 2019,5, 198-208
Article type
Frontier
Author version available

Removal of poly- and per-fluoroalkyl substances from aqueous systems by nano-enabled water treatment strategies

N. B. Saleh, A. Khalid, Y. Tian, C. Ayres, I. V. Sabaraya, J. Pietari, D. Hanigan, I. Chowdhury and O. G. Apul, Environ. Sci.: Water Res. Technol., 2019, 5, 198
DOI: 10.1039/C8EW00621K

Social activity

Search articles by author

Spotlight

Advertisements