Jump to main content
Jump to site search


Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall

Abstract

Our previous studies indicated that the foliar application of silica nanoparticles (Si NPs) could obviously reduce arsenic (As) accumulation in rice. However, the mechanism underlying this effect at the single-cell level has not been reported. In this study, we investigated for the first time the effects of Si NPs on inhibiting As uptake into rice using individual rice cells. The results indicated that the addition of Si NPs could enhance the proportion of live cells by weakening oxidative stress upon As exposure. Compared to the treatment of cells with As only, treatment with Si NPs could maintain the integrity of the cell, increase the thickness of the cell wall (77.4%) and the ratio of As in the pectin (19.6%). In addition, the pectin content, cation exchange capacity (CEC) and pectin methylesterase (PME) activity were also increased in the Si NPs-pretreated cells, leading to a decreased degree of pectin methylesterification and an improved mechanical force of the cell walls. Furthermore, in the Si NPs-pretreated rice cells, the expression of the OsLis1 and OsLis2 genes was lower, whereas the expression of the OsNIP1;1 and OsNIP3;3 genes was higher than that of the As-only group. This finding provides new insights into the mechanism of how the addition of Si NPs inhibits As uptake into rice at the single-cell level and lays the foundation for its application in As-contaminated paddy soil.

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Sep 2019, accepted on 03 Nov 2019 and first published on 07 Nov 2019


Article type: Paper
DOI: 10.1039/C9EN01035A
Environ. Sci.: Nano, 2019, Accepted Manuscript

  •   Request permissions

    Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall

    J. Cui, Y. Li, Q. Jin and F. Li, Environ. Sci.: Nano, 2019, Accepted Manuscript , DOI: 10.1039/C9EN01035A

Search articles by author

Spotlight

Advertisements