Jump to main content
Jump to site search

Issue 5, 2019
Previous Article Next Article

Nanoparticle foam flotation for caesium decontamination using a pH-sensitive surfactant

Author affiliations

Abstract

Ion extraction processes show some limitations related to their selectivity, efficiency, cost and ecological footprint. The recent Fukushima event has stimulated the hunt for innovative extraction processes of the caesium ion. Here, we propose a caesium foam flotation process of a highly selective complexing agent, namely the copper based Prussian blue analogue (Cu-PBA), using a pH-sensitive foaming agent (collector): a polyethoxylated amine surfactant (EthomeenĀ®). The foaming properties, surface charge and surface activity of this complex chemical system have been investigated as a function of pH. It was demonstrated that the pH controls the flotation efficiency through electrostatic interactions between the surfactant and the Cu-PBA. The flotation was highly efficient for pH < 5, where all of the Cu-PBA was extracted by the foam. In contrast, for pH > 10, all of the Cu-BPA remained in the foaming solution and was not extracted in the foam. As a consequence, reversible extraction/de-extraction of the Cu-PBA was made possible through pH cycles, which enables the recycling of the surfactant, reducing both the cost and the environmental impact of the overall process.

Graphical abstract: Nanoparticle foam flotation for caesium decontamination using a pH-sensitive surfactant

Back to tab navigation

Supplementary files

Article information


Submitted
14 Feb 2019
Accepted
23 Mar 2019
First published
02 Apr 2019

Environ. Sci.: Nano, 2019,6, 1576-1584
Article type
Paper

Nanoparticle foam flotation for caesium decontamination using a pH-sensitive surfactant

C. Micheau, D. Dedovets, P. Bauduin, O. Diat and L. Girard, Environ. Sci.: Nano, 2019, 6, 1576
DOI: 10.1039/C9EN00188C

Social activity

Search articles by author

Spotlight

Advertisements