Jump to main content
Jump to site search


Plant species-dependent transformation and translocation of ceria nanoparticles

Author affiliations

Abstract

Uptake of nanoparticles (NPs) by plants is species-dependent; however, its underlying mechanisms are rarely investigated. This study compared the transformation, uptake and translocation of CeO2 NPs (nCeO2) in four different plant species. Corn showed the lowest translocation factor (TF) of Ce, while the differences among the plant species reduced or diminished when the phosphates were removed from the nutrient solution (−P treatment). Using transmission electron microscopy (TEM) and synchrotron-based X-ray absorption near edge spectroscopy (XANES), we found that the removal of phosphate from the nutrient solutions reduces or eliminates the immobilization of Ce3+ on the root surface thus promoting the upward translocation of Ce from roots to shoots, which accounts for the enhanced total Ce detected in all the four plants. Compared with the +P treatment, the Ce(III) contents in the shoots of corn and wheat were enhanced by 27.4 an 4.0 times in the −P treatment, which may account for the reduced biomass of shoots in these two plant species. Our results indicate that different plant species have different abilities of transforming and translocating CeO2 NPs and that the mechanisms differ depending on the chemistry of the surrounding solution (+P/−P). Plant xylems and root exudate compositions are both important factors in determining the transformation of nCeO2 and subsequent translocation of Ce species in plants. Further studies are required to determine the composition of root exudates and to identify the components driving the nCeO2 transformation in different plant species under different culturing conditions.

Graphical abstract: Plant species-dependent transformation and translocation of ceria nanoparticles

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Sep 2018, accepted on 09 Nov 2018 and first published on 13 Nov 2018


Article type: Communication
DOI: 10.1039/C8EN01089G
Citation: Environ. Sci.: Nano, 2019, Advance Article
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Plant species-dependent transformation and translocation of ceria nanoparticles

    P. Zhang, Y. Ma, C. Xie, Z. Guo, X. He, E. Valsami-Jones, I. Lynch, W. Luo, L. Zheng and Z. Zhang, Environ. Sci.: Nano, 2019, Advance Article , DOI: 10.1039/C8EN01089G

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements