Jump to main content
Jump to site search


Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates

Author affiliations

Abstract

Major point sources of per- and polyfluoroalkyl substances (PFASs) cause ubiquitous spread of PFASs in the environment. In this study, surface water and aquatic invertebrates at three Swedish sites impacted by PFAS point sources were characterized, using homologue, isomer and extractable organofluorine (EOF) profiling as well as estimation of bioaccumulation factors (BAFs) and mass discharge. Two sites were impacted by fire training (sites A and R) and the third by industrial runoff (site K). Mean Σ25PFASs concentration in water was 1920 ng L−1 at site R (n = 3), which was more than 20- and 10-fold higher than those from sites A and K, respectively. PFOS was the most predominant PFAS in all waters samples, constituting 29–79% of Σ25PFAS concentrations. Several branched isomers were detected and they substantially contributed to concentrations in surface water (e.g. 49–78% of ΣPFOS) and aquatic invertebrates (e.g. 15–28% of ΣPFOS). BAFs in the aquatic invertebrates indicated higher bioaccumulation for long chain PFASs and lower bioaccumulation for branched PFOS isomers compared to linear PFOS. EOF mass balance showed that Σ25target PFASs in water could explain up to 55% of EOF at site R. However, larger proportions of EOF (>92%) remained unknown in water from sites A and K. Mass discharges were for the first time estimated for EOF and revealed that high amounts of EOF (e.g. 8.2 g F day−1 at site A) could be transported by water to recipient water bodies relative to Σ25PFASs (e.g. 0.15 g day−1 at site A). Overall, we showed that composition profiling, BAFs and EOF mass balance can improve the characterization of PFASs around point sources.

Graphical abstract: Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates

  • This article is part of the themed collection: PFAS
Back to tab navigation

Supplementary files

Publication details

The article was received on 07 Jun 2019, accepted on 19 Aug 2019 and first published on 25 Sep 2019


Article type: Paper
DOI: 10.1039/C9EM00281B
Environ. Sci.: Processes Impacts, 2019, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    Point source characterization of per- and polyfluoroalkyl substances (PFASs) and extractable organofluorine (EOF) in freshwater and aquatic invertebrates

    A. Koch, A. Kärrman, L. W. Y. Yeung, M. Jonsson, L. Ahrens and T. Wang, Environ. Sci.: Processes Impacts, 2019, Advance Article , DOI: 10.1039/C9EM00281B

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements